BRCA and Pancreatic Cancer

Mokenge (Mo) P. Malafa, MD
Chair, Department of GI Oncology
Program Leader, GI Tumor Program
Head, Pancreatic Tumor Section
Moffitt Cancer Center
Tampa, Florida
Objectives

• What is the pancreas?
• What is pancreatic cancer?
• What are the factors that affect pancreatic cancer risk?
 • Risk for pancreatic cancer in BRCA carriers.
• How can we beat pancreatic cancer in BRCA carriers?
 • Research update in early detection strategies.
 • Research update in chemoprevention.
What is the pancreas?
Exocrine and Endocrine Pancreas Secretion

- Acini
- Islet
- Stellate Cell (Vitamin A Containing Cell)

ENZYMES

- Nutrients Digestion and Absorption
- Insulin and Hormone Nutrients Metabolism
- Diabetes Mellitus Metabolic Syndrome
- Pancreatitis
- Pancreatic Cancer

Source: AGA Teaching Slide, Modified by VLW Go
10 Leading Cancer Types for Estimated Deaths by Sex in the US 2008

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>90,810</td>
<td>71,030</td>
</tr>
<tr>
<td>Prostate</td>
<td>28,660</td>
<td>40,480</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>24,260</td>
<td>25,700</td>
</tr>
<tr>
<td>Pancreas</td>
<td>17,500</td>
<td>16,790</td>
</tr>
<tr>
<td>Leukemia</td>
<td>12,460</td>
<td>9,250</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>12,570</td>
<td>9,370</td>
</tr>
<tr>
<td>Esophagus</td>
<td>11,250</td>
<td>7,470</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>9,950</td>
<td>5,650</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>9,790</td>
<td>5,840</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>8,100</td>
<td>3,500</td>
</tr>
<tr>
<td>All sites</td>
<td>294,120</td>
<td>271,530</td>
</tr>
</tbody>
</table>

Female

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>31%</td>
</tr>
<tr>
<td>Prostate</td>
<td>10%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>8%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>4%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>4%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3%</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>3%</td>
</tr>
<tr>
<td>Brain & other nervous system</td>
<td>2%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>2%</td>
</tr>
<tr>
<td>All sites</td>
<td>100%</td>
</tr>
</tbody>
</table>

SOURCE: American Cancer Society, Inc., Surveillance Research, 2008
Pancreatic Cancer

Survival rate 5 years after diagnosis

Source: American Cancer Society
Pancreatic cancer

<table>
<thead>
<tr>
<th>Stage</th>
<th>Characteristics</th>
<th>Medium Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td><2cm</td>
<td>24.1</td>
</tr>
<tr>
<td>IB</td>
<td>>2cm</td>
<td>20.6</td>
</tr>
<tr>
<td>IIA</td>
<td>Beyond pancreas</td>
<td>15.4</td>
</tr>
<tr>
<td>IIB</td>
<td>Regional nodes</td>
<td>12.7</td>
</tr>
<tr>
<td>III</td>
<td>Celiac/SMA involvement</td>
<td>10.6</td>
</tr>
<tr>
<td>IV</td>
<td>metastasis</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Pancreatic Cancer

- 80% advanced stage at diagnosis.
- Resistant to current therapy.
 - Median survival with gemcitabine (6 months).
- Early detection and an agent(s) that can prevent or augment current treatment is urgently needed.
Objectives

- What is the pancreas?
- What is pancreatic cancer?
- What are the factors that affect pancreatic cancer risk?
 - Risk for pancreatic cancer in BRCA carriers.
- How can we beat pancreatic cancer in BRCA carriers?
 - Research update in early detection strategies.
 - Research update in chemoprevention.
Pancreatic Cancer
World-wide Age-standardized Mortality Rates

Publications.cancerresearch.uk
Pancreatic cancer
Risk Factors

• Age, gender, race
• Body mass index
• Pancreatitis
• Smoking
• Family history
• Genetic syndromes
Annual Pancreatic Cancer Incidence Rates by Age, Race, and Sex.
Cigarrete smoking

- Smokers have 2-3X increase in pancreatic cancer.
- Implicated in about 30% PC.
- Promotion of pancreatic cancer in FPC patients.
- Risk decreases when smoking stops (49% within 2 years).

James et al *Cancer* 2004; Bueno de Mesquita et al. *Int J Ca*, 1991
Pancreatic Cancer

Sporadic (~85%)

Known Genetic Syndromes (~5%)

Familial Pancreatic Cancer (~10%)

Pancreatic Cancer

Known genetic syndromes

- Heritable Breast Ovary Cancer (BRCA2)*
- Hereditary Pancreatitis (PRSS1)
- HNPCC/Lynch II (hMSH2 and hMLH1)
- Peutz Jeghers Syndrome (STK11/LKB1)
- (FAMMM) Familial Atypical Multiple Mole Melanoma Syndrome: p16 (CDKNA2)
- Cystic Fibrosis

*The most common associated genetic abnormality found in families with two or more affected relatives
Expected Pancreatic Cancer Incidence per 100,000 in the General U.S. Population

FDRs with Pancreatic Cancer

Risk of Pancreatic Cancer

Genetic syndromes

<table>
<thead>
<tr>
<th>Individuals</th>
<th>Risk</th>
<th>Age 50</th>
<th>Age 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>No History</td>
<td>1</td>
<td>0.05%</td>
<td>0.5%</td>
</tr>
<tr>
<td>BRCA 2 (Breast-Ovarian)</td>
<td>3.5-10</td>
<td>0.5%</td>
<td>5%</td>
</tr>
<tr>
<td>P16 (FAMMM)</td>
<td>20-34</td>
<td>1%</td>
<td>10-17%</td>
</tr>
<tr>
<td>Familial(1-3)</td>
<td>14-32</td>
<td>0.8-1.6%</td>
<td>8-16%</td>
</tr>
<tr>
<td>PRSS1 (Pancreatitis)</td>
<td>50-80</td>
<td>2.5%</td>
<td>25-40%</td>
</tr>
<tr>
<td>STK11/LKB1 (Peutz-Jeghers)</td>
<td>132</td>
<td>6.6%</td>
<td>30-60%</td>
</tr>
</tbody>
</table>
BRCA and Pancreatic Cancer

- **BRCA2 and Pancreatic Cancer**
 - Present in 17-19% of patients with at least 2 or more affected individuals
 - Present in 5-10% of patients with pancreatic cancer without family history
 - 1% Ashkenazi Jews

- **BRCA1 and Pancreatic Cancer**
 - ?-RR 2-fold
Sporadic Cancer
(Two acquired mutations)

2 normal 1 damaged 2 damaged

Hereditary Cancer

1 damaged 2 damaged

Tumor Develops
Pancreatic Oncogenesis

Normal duct
- Low cuboidal cells
- Single cell layer

PanIN-1A
- Elongated cells
- Mucin production

PanIN-1B
- Papillary architecture

PanIN-2
- Nuclear abnormalities: e.g. enlargement, some loss of polarity, crowding

PanIN-3
- Budding into lumen
- Severe nuclear atypia
- Mitosis, some abnormal

Adenocarcinoma
- Invasive growth
- Marked stromal reaction (desmoplasia)

Genes and Protein Levels

- **ERBB2, EGFR**
- **KRAS**
- **INK4A**
- **TP53**
- **SMAD4/DPC4**
- **BRCA2**
- Telomerase

Telomere length

Pancreatic Oncogenesis

genetic alterations

Pancreatic Oncogenesis
Signaling pathways and processes

Components of Pancreatic Cancer

Clinical Presentation

Symptoms

- Painless jaundice
- Dark urine, light stool
- Pancreatitis
- Abdominal pain/back pain
- Weight loss
- Loss of appetite
Clinical Pancreatic Oncology

Objectives

• What is the pancreas?
• What is pancreatic cancer?
• What are the factors that affect pancreatic cancer risk?
 • Risk for pancreatic cancer in BRCA carriers.
• How can we beat pancreatic cancer in BRCA carriers?
 • Research update in early detection strategies.
 • Research update in chemoprevention.
Pancreatic cancer

Why screen?

• Pancreatic cancer is a deadly disease once symptoms develop.
• 5%-20% yield from screening high risk individuals.
• Patients and doctors prefer screening to waiting for symptoms or prophylactic removal of the pancreas.
Pancreatic cancer
Problems with screening?

• Not covered by insurance.
• Firm evidence that it saves lives is still lacking.
• Best/ideal screening method is unknown.
PRECURSOR LESIONS OF PANCREATIC ADENOCARCINOMA

PanIN: Pancreatic Intraductal Neoplasia
MCN: Mucinous Cystic Neoplasm
IPMN: Intraductal Papillary Mucinous Neoplasm
Pancreatic cancer
Methods of early detection?

- Imaging
- Molecular markers
 - Blood
 - Pancreatic juice
 - Urine
Pancreatic cancer screening

Which imaging modality?

<table>
<thead>
<tr>
<th>Modality</th>
<th>Issues</th>
</tr>
</thead>
</table>
| Multidetector CT | • Suboptimal for early pancreatic neoplasia
 | • Concern for repeat radiation exposure |
| MRI/MRCP | • No data on accuracy and yield
 | • High cost |
| ERCP | • Invasive – Risk of pancreatitis |
| EUS | • Highly operator dependent
 | • Poor interobserver variability |

Topazian et al. Gastrointest Endosc, 2007
Yield of screening in high risk individuals

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Modality</th>
<th>Diagnostic yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saunders et al</td>
<td>100</td>
<td>EUS</td>
<td>22%</td>
</tr>
<tr>
<td>Canto et al</td>
<td>78</td>
<td>EUS</td>
<td>10%</td>
</tr>
<tr>
<td>Canto et al</td>
<td>36</td>
<td>EUS</td>
<td>5.3%</td>
</tr>
<tr>
<td>Poley et al</td>
<td>17</td>
<td>EUS</td>
<td>18%</td>
</tr>
</tbody>
</table>

Protocol for High-Risk Assessment, Screening and Early Detection of Pancreatic Cancer at Moffitt Cancer Center

Jason Klapman, MD
Principal investigator
IRB #14482
Study Design

- Eligibility Criteria
 - Pts with at least 1 FDR from a familial PC kindred with at least 2 members affected
 - Age >40 or 10yrs younger than youngest affected
 - PJS patients age>30
 - Familial Pancreatitis patients
 - FAMMM
 - FAP
 - Pt’s with BRCA2 (Esp if FMHx of Pancreatic cancer)
 - Willingness to undergo EUS/FNA and Surgical Eval for abnormal EUS/FNA
 - Willingness to under Ct scans if screening abnormal
Study Design

• Exclusion Criteria
 – Age<18
 – Medical Contraindications to endoscopy or obstruction of GI tract
 – Personal History of Pancreatic Adenocarcinoma
 – Previous partial/complete resection of the pancreas for adenocarcinoma
 – Prior partial or total gastrectomy with B2 or Roux-En-Y anastamosis
Patient Recruitment

- Established patients/relatives of patients at Moffitt
- Tumor registry
- Lifetime cancer screening and prevention center
- Direct referrals from affiliate network
- Self-referred
Endoscopic Ultrasound (EUS)

- Originally developed as an alternative diagnostic imaging modality of the pancreas
- Technological advances have broadened the field of Endoscopic Ultrasound
 - EUS-guided Fine-Needle Aspiration (FNA)
 - EUS-guided FNA of a pancreatic cancer in 1992
EUS Equipment

- Radial Echoendoscopes
EUS-guided FNA

- **Safety**
 - Outpatient procedure
 - EUS alone has similar risk profile to standard endoscopy
 - EUS-guided FNA adds 1% risk of pancreatitis
Linear Echoendoscopes
High-Risk Individual Identified

- Consent For Pancreatic Screening Protocol
- Genetic Counseling

Total Cancer Care Protocol/Lifetime Cancer Database

Screening EUS Exam

- Normal
 - Repeat EUS in 1 yr
- Abnormal (Mass/Cyst)
 - EUS-Guided FNA

Invasive or pre-invasive neoplasm

- Pancreatic and Chest CT
 - Resectable
 - Surgical referral
 - Unresectable
 - Referral to Oncology
- Benign
 - Repeat EUS/FNA 6 months
- Indeterminate
 - Repeat EUS 3 Months
Objectives

• What is the pancreas?
• What is pancreatic cancer?
• What are the factors that affect pancreatic cancer risk?
 • Risk for pancreatic cancer in BRCA carriers.
• How can we beat pancreatic cancer in BRCA carriers?
 • Research update in early detection strategies.
 • Research update in chemoprevention.
What Will It Take To Establish A Chemopreventive Agent For Pancreatic Neoplasia?

- Identify and characterize potential chemopreventive agents.
- Establish ‘proof of concept’ in early phase trials.
- Identify the individuals who will benefit.
- Prove benefit in phase III trial.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Trial</th>
<th>Site</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00094445* Dhillon et al.47</td>
<td>Curcumin (in advanced pancreatic cancer)</td>
<td>MD Anderson Cancer Center, USA</td>
<td>Phase II Published results for first 25 patients (biological effect in some patients)</td>
</tr>
<tr>
<td>NCT00192842*</td>
<td>Curcumin and gemcitabine (in advanced pancreatic cancer)</td>
<td>Rambam Health Care Campus, Israel</td>
<td>Phase II</td>
</tr>
<tr>
<td>NCT00486460*</td>
<td>Curcumin, gemcitabine and celecoxib (in advanced pancreatic cancer)</td>
<td>Tel-Aviv Sourasky Medical Center, Israel</td>
<td>Phase III</td>
</tr>
<tr>
<td>Goel et al.31</td>
<td>Curcumin (in advanced pancreatic cancer)</td>
<td>Kyoto University, Japan</td>
<td>Phase II</td>
</tr>
<tr>
<td>NCT00198081*</td>
<td>Celecoxib (prevention in patients with premalignant pancreatic lesions)</td>
<td>Indiana University School of Medicine, USA</td>
<td>Phase II</td>
</tr>
<tr>
<td>NCT00985777*</td>
<td>Vitamin E delta-tocotrienol (in resectable pancreatic cancer)</td>
<td>H. Lee Moffitt Cancer Center and Research Institute, USA</td>
<td>Phase I</td>
</tr>
<tr>
<td>NCT00882765*</td>
<td>Genistein (in resectable pancreatic cancer)</td>
<td>Jonsson Comprehensive Cancer Center at UCLA, USA</td>
<td>Phase II</td>
</tr>
</tbody>
</table>

*Source: www.clinicaltrials.gov.
Food-Genome Interface

Vitamin E Tocotrienols
Food Sources

Palm Rice Wheat Barley Rye Oat

Mo Malafa, MD
Nutrition and Pancreatic Cancer Protection

- **Increasing vegetable, fruit, and cereal consumption may protect against pancreatic cancer**

<table>
<thead>
<tr>
<th>Studies</th>
<th>Benefit</th>
<th>No Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Case Control</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Mo Malafa, MD
Pancreatic Cancer
Whole grain decreases risk

- Risk of pancreatic cancer reduced by nearly 50% with whole grain consumption.

- How?
 - Bioactive food components?

Natural Vitamin E Compounds

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha (α-)</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>Betta (β-)</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>Gamma (γ-)</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>Delta (δ-)</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
</tr>
</tbody>
</table>
Tocotrienols in Pancreatic Cancer
Preclinical studies

• Delta-tocotrienol was the most effective vitamin E compound against pancreatic cancer.
• Mice receiving delta-tocotrienol showed pancreatic tumor growth inhibition.
• Adequate levels of delta-tocotrienol in the pancreas of mice was achieved with well tolerated oral dosing.
Tocotrienols in Pancreatic Cancer

Preclinical identification of biomarkers

• δ-Tocotrienol preclinical studies demonstrated specific PD effects.
 – Decreased tumor cell proliferation.
 – Increased tumor cell apoptosis.

• RNAi and chemical inhibitors confirmed the essential role of specific biomarkers (p27, caspase 8) in δ-tocotrienol MOA.
Transgenic Mouse Model of Pancreatic Cancer

- LSL-KRASG12D;PDX-1-Cre mice
 - PDX – developmental transcription factor, targets to pancreatic progenitor cells
 - KRASG12D mutation commonly found in human pancreatic ductal adenocarcinoma, constitutive activation
- By 9 months ~30% of ducts show PanIN-1B/-2 lesions and ~5% signs of PanIN-3 lesions
- By 15 months virtually every animal develops invasive pancreatic ductal adenocarcinoma

Hingorani et al., *Cancer Cell*, 4:437, 2003
The hypothesis

• Vitamin E delta-tocotrienol will activate cell death and decrease proliferation of pancreatic neoplastic cells thereby resulting in the inhibition or delay of pancreatic tumor growth.
Phase I Study of Vitamin E δ-Tocotrienol in Pancreatic Neoplasia

- Single center, open label, dose-escalation study.
- Approximately 32 patients with pancreatic tumors undergoing surgery will be enrolled.
- Oral route of administration.
Phase I Study of Vitamin E δ-Tocotrienol in Pancreatic Neoplasia

Eligibility
Resectable Pancreatic Tumor

δ-tocotrienol

Day: 0
Pre-treatment Biopsy and blood draw

15 days
Post-treatment tissue and blood draw

Mo Malafa, MD
Phase I Study of Vitamin E δ-Tocotrienol in Pancreatic Neoplasia

• Objectives:
 – Primary:
 1. Phase II dose = Biologically Effective Dose (BED).
 2. Safety and tolerability (5.6X the predicted BED).
 – Secondary:
 1. Pharmacokinetics.
 2. Pharmacodynamics in blood, pancreatic tumor tissue, and adjacent resected tissues.
 3. Biodistribution of δ-tocotrienol in blood, pancreatic tumor tissue, and adjacent resected tissues.
Phase I Study of Vitamin E δ-Tocotrienol in Pancreatic Neoplasia

• **Outcomes:**
 - **Primary:**
 1. Biologically Effective Dose (BED) defined as dose which significantly induces apoptosis and reduces proliferation in pancreatic neoplastic cells.
 - **Secondary:**
 1. Activation of caspase 8 and 3.
 2. Induction of p27.
 3. Inhibition of cFLIP, pMAPK, pAKT.
• **Other** (DCE-MRI, PET scan, etc).

Mo Malafa, MD
Phase I Study of Vitamin E \(\delta \)-Tocotrienol in Pancreatic Neoplasia

Presurgical biomarker trial

• **Advantages:**
 – Rapid.
 – Rationale.
 – Cost effective.
 – Patients are not terminal or heavily pretreated.

• **Disadvantage:**
 – ? Biomarkers will translate to meaningful clinical outcomes (increase patient survival).

Mo Malafa, MD
Pancreatic Cancer
Population At-Risk

- Heritable syndromes (10%-15%).
- Incidental pre-neoplastic pancreatic tumors on body imaging (? 2.6% of CT Scans).
- Pancreatic cancer patients after curative resection (70% relapse rate).
Strategy For Investigating δ-Tocotrienol In Pancreatic Cancer

Phase 0/I ‘Proof of Concept’ trials in:
• Patients undergoing surgical resection.
• Patients who have had resection.
• Healthy subjects.

Phase II/III trials in:
• Patients with resected Pancreatic Ca.

Phase III trials in:
• Heritable syndromes.
• Incidental pre-neoplastic tumors
"Let food be your medicine" - Hippocrates

Red Palm Oil may have potential anti-cancer properties

Mo Malafa, MD
BRCA and Pancreatic Cancer
Summary

• BRCA 2 is a common mutation in both familial and sporadic pancreatic cancer.

• Individuals with BRCA 2 have 10X risk of developing PC (10/200). BRCA 1 2X risk.

• To fight this risk, the priority should be research in:
 – Early detection
 – Prevention
Acknowledgements

- Malafa Lab
 - Kazim Husain, PhD
 - Teruo Yamauchi, MD
 - Rony Francois.

- GI Program
 - Gregory Springett, MD, PhD
 - Jason Klapman, MD

- Clinical Trials Core
 - Rich Lush, PhD

- Drug Discovery
 - Said Sebti, PhD
 - John Koomen, PhD
 - Nick Lawrence, PhD

- Pathology Program
 - Barbara Centeno, MD
 - Domenico Coppolla, MD

- Davos Life Sciences Pft. Ltd
 - Dato’ Seri Lee Oi Hian
 - Ralf Lange

Funding: NIH 1R01CA129227-01A1; Robert Kurtz Pledge MCC 09-33412-06-01; Bankhead Coley MCC 30155030106; and Steinman Family Foundation MCC 09334120805.